Score: 0

Semantic Source Code Segmentation using Small and Large Language Models

Published: July 11, 2025 | arXiv ID: 2507.08992v1

By: Abdelhalim Dahou , Ansgar Scherp , Sebastian Kurten and more

Potential Business Impact:

Helps find important parts in computer code.

Source code segmentation, dividing code into functionally coherent segments, is crucial for knowledge retrieval and maintenance in software development. While enabling efficient navigation and comprehension of large codebases, manual and syntactic analysis approaches have become impractical as repositories grow, especially for low-resource languages like R and their research domains (e.g., social sciences, psychology).This paper introduces an automated, domain-specific approach for research R code segmentation using Large and Small Language Models (LLMs/SLMs). It presents two novel approaches and a human-annotated dataset, StatCodeSeg. We explore two distinct approaches: line-by-line analysis with context and range-based segment determination. We experiment with LLMs and fine-tuned SLMs. To support the generalizability of our approaches, we also include experiments on Python code from the computer science domain.Our results show that context-based line-by-line analysis is superior over range-based segmentation.Using smaller language models like CodeBERT and an encoder-only version of CodeT5+ are better than their LLM counterparts. Most notably, these two best-performing models did not see R code during pre-training versus the LLMs but were only fine-tuned on 4,130 lines of manually annotated code.

Page Count
18 pages

Category
Computer Science:
Software Engineering