Advancing Reliable Test-Time Adaptation of Vision-Language Models under Visual Variations
By: Yiwen Liang , Hui Chen , Yizhe Xiong and more
Potential Business Impact:
Helps AI understand new pictures better.
Vision-language models (VLMs) exhibit remarkable zero-shot capabilities but struggle with distribution shifts in downstream tasks when labeled data is unavailable, which has motivated the development of Test-Time Adaptation (TTA) to improve VLMs' performance during inference without annotations. Among various TTA approaches, cache-based methods show promise by preserving historical knowledge from low-entropy samples in a dynamic cache and fostering efficient adaptation. However, these methods face two critical reliability challenges: (1) entropy often becomes unreliable under distribution shifts, causing error accumulation in the cache and degradation in adaptation performance; (2) the final predictions may be unreliable due to inflexible decision boundaries that fail to accommodate large downstream shifts. To address these challenges, we propose a Reliable Test-time Adaptation (ReTA) method that integrates two complementary strategies to enhance reliability from two perspectives. First, to mitigate the unreliability of entropy as a sample selection criterion for cache construction, we introduce Consistency-aware Entropy Reweighting (CER), which incorporates consistency constraints to weight entropy during cache updating. While conventional approaches rely solely on low entropy for cache prioritization and risk introducing noise, our method leverages predictive consistency to maintain a high-quality cache and facilitate more robust adaptation. Second, we present Diversity-driven Distribution Calibration (DDC), which models class-wise text embeddings as multivariate Gaussian distributions, enabling adaptive decision boundaries for more accurate predictions across visually diverse content. Extensive experiments demonstrate that ReTA consistently outperforms state-of-the-art methods, particularly under real-world distribution shifts. Code: https://github.com/Evelyn1ywliang/ReTA.
Similar Papers
Adaptive Cache Enhancement for Test-Time Adaptation of Vision-Language Models
CV and Pattern Recognition
Helps AI see better when things look different.
ETTA: Efficient Test-Time Adaptation for Vision-Language Models through Dynamic Embedding Updates
CV and Pattern Recognition
Makes AI better at understanding new pictures.
Realistic Test-Time Adaptation of Vision-Language Models
CV and Pattern Recognition
Helps AI understand new things without extra training.