Score: 0

Mechanistic Interpretability of LoRA-Adapted Language Models for Nuclear Reactor Safety Applications

Published: July 14, 2025 | arXiv ID: 2507.09931v2

By: Yoon Pyo Lee

Potential Business Impact:

Shows how smart computers learn nuclear power secrets.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

The integration of Large Language Models (LLMs) into safety-critical domains, such as nuclear engineering, necessitates a deep understanding of their internal reasoning processes. This paper presents a novel methodology for interpreting how an LLM encodes and utilizes domain-specific knowledge, using a Boiling Water Reactor system as a case study. We adapted a general-purpose LLM (Gemma-3-1b-it) to the nuclear domain using a parameter-efficient fine-tuning technique known as Low-Rank Adaptation. By comparing the neuron activation patterns of the base model to those of the fine-tuned model, we identified a sparse set of neurons whose behavior was significantly altered during the adaptation process. To probe the causal role of these specialized neurons, we employed a neuron silencing technique. Our results demonstrate that while silencing most of these specialized neurons individually did not produce a statistically significant effect, deactivating the entire group collectively led to a statistically significant degradation in task performance. Qualitative analysis further revealed that silencing these neurons impaired the model's ability to generate detailed, contextually accurate technical information. This paper provides a concrete methodology for enhancing the transparency of an opaque black-box model, allowing domain expertise to be traced to verifiable neural circuits. This offers a pathway towards achieving nuclear-grade artificial intelligence (AI) assurance, addressing the verification and validation challenges mandated by nuclear regulatory frameworks (e.g., 10 CFR 50 Appendix B), which have limited AI deployment in safety-critical nuclear operations.

Country of Origin
🇰🇷 Korea, Republic of

Page Count
24 pages

Category
Computer Science:
Machine Learning (CS)