Score: 0

Federated Learning for Commercial Image Sources

Published: July 17, 2025 | arXiv ID: 2507.12903v1

By: Shreyansh Jain, Koteswar Rao Jerripothula

Potential Business Impact:

Teaches computers without sharing private photos.

Business Areas:
Image Recognition Data and Analytics, Software

Federated Learning is a collaborative machine learning paradigm that enables multiple clients to learn a global model without exposing their data to each other. Consequently, it provides a secure learning platform with privacy-preserving capabilities. This paper introduces a new dataset containing 23,326 images collected from eight different commercial sources and classified into 31 categories, similar to the Office-31 dataset. To the best of our knowledge, this is the first image classification dataset specifically designed for Federated Learning. We also propose two new Federated Learning algorithms, namely Fed-Cyclic and Fed-Star. In Fed-Cyclic, a client receives weights from its previous client, updates them through local training, and passes them to the next client, thus forming a cyclic topology. In Fed-Star, a client receives weights from all other clients, updates its local weights through pre-aggregation (to address statistical heterogeneity) and local training, and sends its updated local weights to all other clients, thus forming a star-like topology. Our experiments reveal that both algorithms perform better than existing baselines on our newly introduced dataset.

Country of Origin
🇮🇳 India

Page Count
10 pages

Category
Computer Science:
CV and Pattern Recognition