RIDAS: A Multi-Agent Framework for AI-RAN with Representation- and Intention-Driven Agents
By: Kuiyuan Ding , Caili Guo , Yang Yang and more
Potential Business Impact:
Makes phone networks smarter for more users.
Sixth generation (6G) networks demand tight integration of artificial intelligence (AI) into radio access networks (RANs) to meet stringent quality of service (QoS) and resource efficiency requirements. Existing solutions struggle to bridge the gap between high level user intents and the low level, parameterized configurations required for optimal performance. To address this challenge, we propose RIDAS, a multi agent framework composed of representation driven agents (RDAs) and an intention driven agent (IDA). RDAs expose open interface with tunable control parameters (rank and quantization bits, enabling explicit trade) offs between distortion and transmission rate. The IDA employs a two stage planning scheme (bandwidth pre allocation and reallocation) driven by a large language model (LLM) to map user intents and system state into optimal RDA configurations. Experiments demonstrate that RIDAS supports 44.71\% more users than WirelessAgent under equivalent QoS constraints. These results validate ability of RIDAS to capture user intent and allocate resources more efficiently in AI RAN environments.
Similar Papers
RIDAS: A Multi-Agent Framework for AI-RAN with Representation- and Intention-Driven Agents
Networking and Internet Architecture
Makes phones connect better with smart planning.
Agentic AI for Ultra-Modern Networks: Multi-Agent Framework for RAN Autonomy and Assurance
Networking and Internet Architecture
Makes future cell networks smarter and safer.
AgentRAN: An Agentic AI Architecture for Autonomous Control of Open 6G Networks
Artificial Intelligence
AI makes cell towers smarter and self-fixing.