Score: 1

RIDAS: A Multi-Agent Framework for AI-RAN with Representation- and Intention-Driven Agents

Published: July 17, 2025 | arXiv ID: 2507.13140v2

By: Kuiyuan Ding , Caili Guo , Yang Yang and more

Potential Business Impact:

Makes phone networks smarter for more users.

Business Areas:
Intelligent Systems Artificial Intelligence, Data and Analytics, Science and Engineering

Sixth generation (6G) networks demand tight integration of artificial intelligence (AI) into radio access networks (RANs) to meet stringent quality of service (QoS) and resource efficiency requirements. Existing solutions struggle to bridge the gap between high level user intents and the low level, parameterized configurations required for optimal performance. To address this challenge, we propose RIDAS, a multi agent framework composed of representation driven agents (RDAs) and an intention driven agent (IDA). RDAs expose open interface with tunable control parameters (rank and quantization bits, enabling explicit trade) offs between distortion and transmission rate. The IDA employs a two stage planning scheme (bandwidth pre allocation and reallocation) driven by a large language model (LLM) to map user intents and system state into optimal RDA configurations. Experiments demonstrate that RIDAS supports 44.71\% more users than WirelessAgent under equivalent QoS constraints. These results validate ability of RIDAS to capture user intent and allocate resources more efficiently in AI RAN environments.

Country of Origin
🇨🇳 China

Repos / Data Links

Page Count
6 pages

Category
Computer Science:
Networking and Internet Architecture