Score: 1

Fluid Antenna-enabled Near-Field Integrated Sensing, Computing and Semantic Communication for Emerging Applications

Published: July 21, 2025 | arXiv ID: 2507.15800v1

By: Yinchao Yang , Jingxuan Zhou , Zhaohui Yang and more

Potential Business Impact:

Smart antennas send less data, keeping secrets safe.

Business Areas:
NFC Hardware

The integration of sensing and communication (ISAC) is a key enabler for next-generation technologies. With high-frequency bands and large-scale antenna arrays, the Rayleigh distance extends, necessitating near-field (NF) models where waves are spherical. Although NF-ISAC improves both sensing and communication, it also poses challenges such as high data volume and potential privacy risks. To address these, we propose a novel framework: near-field integrated sensing, computing, and semantic communication (NF-ISCSC), which leverages semantic communication to transmit contextual information only, thereby reducing data overhead and improving efficiency. However, semantic communication is sensitive to channel variations, requiring adaptive mechanisms. To this end, fluid antennas (FAs) are introduced to support the NF-ISCSC system, enabling dynamic adaptability to changing channels. The proposed FA-enabled NF-ISCSC framework considers multiple communication users and extended targets comprising several scatterers. A joint optimization problem is formulated to maximize data rate while accounting for sensing quality, computational load, and power budget. Using an alternating optimization (AO) approach, the original problem is divided into three sub-problems: ISAC beamforming, FA positioning, and semantic extraction ratio. Beamforming is optimized using the successive convex approximation method. FA positioning is solved via a projected Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, and the semantic extraction ratio is optimized using bisection search. Simulation results demonstrate that the proposed framework achieves higher data rates and better privacy preservation.

Country of Origin
🇬🇧 🇨🇳 United Kingdom, China

Page Count
17 pages

Category
Electrical Engineering and Systems Science:
Signal Processing