Meta-Learning for Cold-Start Personalization in Prompt-Tuned LLMs
By: Yushang Zhao , Huijie Shen , Dannier Li and more
Potential Business Impact:
Helps computers suggest things to new users fast.
Generative, explainable, and flexible recommender systems, derived using Large Language Models (LLM) are promising and poorly adapted to the cold-start user situation, where there is little to no history of interaction. The current solutions i.e. supervised fine-tuning and collaborative filtering are dense-user-item focused and would be expensive to maintain and update. This paper introduces a meta-learning framework, that can be used to perform parameter-efficient prompt-tuning, to effectively personalize LLM-based recommender systems quickly at cold-start. The model learns soft prompt embeddings with first-order (Reptile) and second-order (MAML) optimization by treating each of the users as the tasks. As augmentations to the input tokens, these learnable vectors are the differentiable control variables that represent user behavioral priors. The prompts are meta-optimized through episodic sampling, inner-loop adaptation, and outer-loop generalization. On MovieLens-1M, Amazon Reviews, and Recbole, we can see that our adaptive model outperforms strong baselines in NDCG@10, HR@10, and MRR, and it runs in real-time (i.e., below 300 ms) on consumer GPUs. Zero-history personalization is also supported by this scalable solution, and its 275 ms rate of adaptation allows successful real-time risk profiling of financial systems by shortening detection latency and improving payment network stability. Crucially, the 275 ms adaptation capability can enable real-time risk profiling for financial institutions, reducing systemic vulnerability detection latency significantly versus traditional compliance checks. By preventing contagion in payment networks (e.g., Fedwire), the framework strengthens national financial infrastructure resilience.
Similar Papers
Instructional Prompt Optimization for Few-Shot LLM-Based Recommendations on Cold-Start Users
Artificial Intelligence
Helps new users get good suggestions faster.
System Prompt Optimization with Meta-Learning
Computation and Language
Makes AI understand instructions better for any task.
LLMs as In-Context Meta-Learners for Model and Hyperparameter Selection
Machine Learning (CS)
AI helps pick the best computer programs.