Graph Neural Network-Based Predictor for Optimal Quantum Hardware Selection
By: Antonio Tudisco , Deborah Volpe , Giacomo Orlandi and more
Potential Business Impact:
Finds best computer for quantum tasks.
The growing variety of quantum hardware technologies, each with unique peculiarities such as connectivity and native gate sets, creates challenges when selecting the best platform for executing a specific quantum circuit. This selection process usually involves a brute-force approach: compiling the circuit on various devices and evaluating performance based on factors such as circuit depth and gate fidelity. However, this method is computationally expensive and does not scale well as the number of available quantum processors increases. In this work, we propose a Graph Neural Network (GNN)-based predictor that automates hardware selection by analyzing the Directed Acyclic Graph (DAG) representation of a quantum circuit. Our study evaluates 498 quantum circuits (up to 27 qubits) from the MQT Bench dataset, compiled using Qiskit on four devices: three superconducting quantum processors (IBM-Kyiv, IBM-Brisbane, IBM-Sherbrooke) and one trapped-ion processor (IONQ-Forte). Performance is estimated using a metric that integrates circuit depth and gate fidelity, resulting in a dataset where 93 circuits are optimally compiled on the trapped-ion device, while the remaining circuits prefer superconducting platforms. By exploiting graph-based machine learning, our approach avoids extracting the circuit features for the model evaluation but directly embeds it as a graph, significantly accelerating the optimal target decision-making process and maintaining all the information. Experimental results prove 94.4% accuracy and an 85.5% F1 score for the minority class, effectively predicting the best compilation target. The developed code is publicly available on GitHub (https://github.com/antotu/GNN-Model-Quantum-Predictor).
Similar Papers
Graph Neural Network-Based Predictor for Optimal Quantum Hardware Selection
Quantum Physics
Finds best computer for quantum tasks.
Graph-Based Bayesian Optimization for Quantum Circuit Architecture Search with Uncertainty Calibrated Surrogates
Quantum Physics
Finds better quantum computer programs for AI.
Optimizing Quantum Key Distribution Network Performance using Graph Neural Networks
Quantum Physics
Makes secret messages safer from future computers.