Score: 1

Human Mobility in Epidemic Modeling

Published: July 30, 2025 | arXiv ID: 2507.22799v1

By: Xin Lu , Jiawei Feng , Shengjie Lai and more

Potential Business Impact:

Tracks how people move to stop sickness spread.

Business Areas:
mHealth Health Care, Mobile

Human mobility forms the backbone of contact patterns through which infectious diseases propagate, fundamentally shaping the spatio-temporal dynamics of epidemics and pandemics. While traditional models are often based on the assumption that all individuals have the same probability of infecting every other individual in the population, a so-called random homogeneous mixing, they struggle to capture the complex and heterogeneous nature of real-world human interactions. Recent advancements in data-driven methodologies and computational capabilities have unlocked the potential of integrating high-resolution human mobility data into epidemic modeling, significantly improving the accuracy, timeliness, and applicability of epidemic risk assessment, contact tracing, and intervention strategies. This review provides a comprehensive synthesis of the current landscape in human mobility-informed epidemic modeling. We explore diverse sources and representations of human mobility data, and then examine the behavioral and structural roles of mobility and contact in shaping disease transmission dynamics. Furthermore, the review spans a wide range of epidemic modeling approaches, ranging from classical compartmental models to network-based, agent-based, and machine learning models. And we also discuss how mobility integration enhances risk management and response strategies during epidemics. By synthesizing these insights, the review can serve as a foundational resource for researchers and practitioners, bridging the gap between epidemiological theory and the dynamic complexities of human interaction while charting clear directions for future research.

Repos / Data Links

Page Count
79 pages

Category
Computer Science:
Social and Information Networks