Score: 0

Extended Factorization Machine Annealing for Rapid Discovery of Transparent Conducting Materials

Published: July 30, 2025 | arXiv ID: 2507.23160v1

By: Daisuke Makino, Tatsuya Goto, Yoshinori Suga

Potential Business Impact:

Finds better materials for screens and solar panels.

Business Areas:
Advanced Materials Manufacturing, Science and Engineering

The development of novel transparent conducting materials (TCMs) is essential for enhancing the performance and reducing the cost of next-generation devices such as solar cells and displays. In this research, we focus on the (Al$_x$Ga$_y$In$_z$)$_2$O$_3$ system and extend the FMA framework, which combines a Factorization Machine (FM) and annealing, to search for optimal compositions and crystal structures with high accuracy and low cost. The proposed method introduces (i) the binarization of continuous variables, (ii) the utilization of good solutions using a Hopfield network, (iii) the activation of global search through adaptive random flips, and (iv) fine-tuning via a bit-string local search. Validation using the (Al$_x$Ga$_y$In$_z$)$_2$O$_3$ data from the Kaggle "Nomad2018 Predicting Transparent Conductors" competition demonstrated that our method achieves faster and more accurate searches than Bayesian optimization and genetic algorithms. Furthermore, its application to multi-objective optimization showed its capability in designing materials by simultaneously considering both the band gap and formation energy. These results suggest that applying our method to larger, more complex search problems and diverse material designs that reflect realistic experimental conditions is expected to contribute to the further advancement of materials informatics.

Page Count
12 pages

Category
Condensed Matter:
Materials Science