Stress-Aware Resilient Neural Training
By: Ashkan Shakarami , Yousef Yeganeh , Azade Farshad and more
Potential Business Impact:
Helps computers learn better when things are tough.
This paper introduces Stress-Aware Learning, a resilient neural training paradigm in which deep neural networks dynamically adjust their optimization behavior - whether under stable training regimes or in settings with uncertain dynamics - based on the concept of Temporary (Elastic) and Permanent (Plastic) Deformation, inspired by structural fatigue in materials science. To instantiate this concept, we propose Plastic Deformation Optimizer, a stress-aware mechanism that injects adaptive noise into model parameters whenever an internal stress signal - reflecting stagnation in training loss and accuracy - indicates persistent optimization difficulty. This enables the model to escape sharp minima and converge toward flatter, more generalizable regions of the loss landscape. Experiments across six architectures, four optimizers, and seven vision benchmarks demonstrate improved robustness and generalization with minimal computational overhead. The code and 3D visuals will be available on GitHub: https://github.com/Stress-Aware-Learning/SAL.
Similar Papers
Stress-Aware Learning under KL Drift via Trust-Decayed Mirror Descent
Machine Learning (CS)
Helps computers learn when rules change suddenly.
Global Stress Generation and Spatiotemporal Super-Resolution Physics-Informed Operator under Dynamic Loading for Two-Phase Random Materials
Machine Learning (CS)
Shows hidden stress in materials, even tiny parts.
Machine Learning Based Stress Testing Framework for Indian Financial Market Portfolios
Risk Management
Helps banks predict money problems better.