Score: 2

Stress-Aware Resilient Neural Training

Published: July 31, 2025 | arXiv ID: 2508.00098v1

By: Ashkan Shakarami , Yousef Yeganeh , Azade Farshad and more

Potential Business Impact:

Helps computers learn better when things are tough.

This paper introduces Stress-Aware Learning, a resilient neural training paradigm in which deep neural networks dynamically adjust their optimization behavior - whether under stable training regimes or in settings with uncertain dynamics - based on the concept of Temporary (Elastic) and Permanent (Plastic) Deformation, inspired by structural fatigue in materials science. To instantiate this concept, we propose Plastic Deformation Optimizer, a stress-aware mechanism that injects adaptive noise into model parameters whenever an internal stress signal - reflecting stagnation in training loss and accuracy - indicates persistent optimization difficulty. This enables the model to escape sharp minima and converge toward flatter, more generalizable regions of the loss landscape. Experiments across six architectures, four optimizers, and seven vision benchmarks demonstrate improved robustness and generalization with minimal computational overhead. The code and 3D visuals will be available on GitHub: https://github.com/Stress-Aware-Learning/SAL.

Country of Origin
🇮🇹 🇩🇪 Germany, Italy

Repos / Data Links

Page Count
16 pages

Category
Computer Science:
Machine Learning (CS)