Score: 1

WeightFlow: Learning Stochastic Dynamics via Evolving Weight of Neural Network

Published: August 1, 2025 | arXiv ID: 2508.00451v1

By: Ruikun Li , Jiazhen Liu , Huandong Wang and more

Potential Business Impact:

Helps computers understand how things change over time.

Modeling stochastic dynamics from discrete observations is a key interdisciplinary challenge. Existing methods often fail to estimate the continuous evolution of probability densities from trajectories or face the curse of dimensionality. To address these limitations, we presents a novel paradigm: modeling dynamics directly in the weight space of a neural network by projecting the evolving probability distribution. We first theoretically establish the connection between dynamic optimal transport in measure space and an equivalent energy functional in weight space. Subsequently, we design WeightFlow, which constructs the neural network weights into a graph and learns its evolution via a graph controlled differential equation. Experiments on interdisciplinary datasets demonstrate that WeightFlow improves performance by an average of 43.02\% over state-of-the-art methods, providing an effective and scalable solution for modeling high-dimensional stochastic dynamics.

Country of Origin
🇨🇳 China

Page Count
9 pages

Category
Computer Science:
Computational Engineering, Finance, and Science