Score: 1

Rethinking Multimodality: Optimizing Multimodal Deep Learning for Biomedical Signal Classification

Published: August 1, 2025 | arXiv ID: 2508.00963v1

By: Timothy Oladunni, Alex Wong

Potential Business Impact:

Boosts heart signal accuracy with smart data mixes

This study proposes a novel perspective on multimodal deep learning for biomedical signal classification, systematically analyzing how complementary feature domains impact model performance. While fusing multiple domains often presumes enhanced accuracy, this work demonstrates that adding modalities can yield diminishing returns, as not all fusions are inherently advantageous. To validate this, five deep learning models were designed, developed, and rigorously evaluated: three unimodal (1D-CNN for time, 2D-CNN for time-frequency, and 1D-CNN-Transformer for frequency) and two multimodal (Hybrid 1, which fuses 1D-CNN and 2D-CNN; Hybrid 2, which combines 1D-CNN, 2D-CNN, and a Transformer). For ECG classification, bootstrapping and Bayesian inference revealed that Hybrid 1 consistently outperformed the 2D-CNN baseline across all metrics (p-values < 0.05, Bayesian probabilities > 0.90), confirming the synergistic complementarity of the time and time-frequency domains. Conversely, Hybrid 2's inclusion of the frequency domain offered no further improvement and sometimes a marginal decline, indicating representational redundancy; a phenomenon further substantiated by a targeted ablation study. This research redefines a fundamental principle of multimodal design in biomedical signal analysis. We demonstrate that optimal domain fusion isn't about the number of modalities, but the quality of their inherent complementarity. This paradigm-shifting concept moves beyond purely heuristic feature selection. Our novel theoretical contribution, "Complementary Feature Domains in Multimodal ECG Deep Learning," presents a mathematically quantifiable framework for identifying ideal domain combinations, demonstrating that optimal multimodal performance arises from the intrinsic information-theoretic complementarity among fused domains.

Country of Origin
πŸ‡ΊπŸ‡Έ United States

Page Count
35 pages

Category
Computer Science:
Machine Learning (CS)