Score: 1

Integrating Disparity Confidence Estimation into Relative Depth Prior-Guided Unsupervised Stereo Matching

Published: August 2, 2025 | arXiv ID: 2508.01275v1

By: Chuang-Wei Liu , Mingjian Sun , Cairong Zhao and more

Potential Business Impact:

Helps robots see depth without needing labeled training data.

Unsupervised stereo matching has garnered significant attention for its independence from costly disparity annotations. Typical unsupervised methods rely on the multi-view consistency assumption for training networks, which suffer considerably from stereo matching ambiguities, such as repetitive patterns and texture-less regions. A feasible solution lies in transferring 3D geometric knowledge from a relative depth map to the stereo matching networks. However, existing knowledge transfer methods learn depth ranking information from randomly built sparse correspondences, which makes inefficient utilization of 3D geometric knowledge and introduces noise from mistaken disparity estimates. This work proposes a novel unsupervised learning framework to address these challenges, which comprises a plug-and-play disparity confidence estimation algorithm and two depth prior-guided loss functions. Specifically, the local coherence consistency between neighboring disparities and their corresponding relative depths is first checked to obtain disparity confidence. Afterwards, quasi-dense correspondences are built using only confident disparity estimates to facilitate efficient depth ranking learning. Finally, a dual disparity smoothness loss is proposed to boost stereo matching performance at disparity discontinuities. Experimental results demonstrate that our method achieves state-of-the-art stereo matching accuracy on the KITTI Stereo benchmarks among all unsupervised stereo matching methods.

Country of Origin
🇨🇳 China

Page Count
13 pages

Category
Computer Science:
CV and Pattern Recognition