Score: 0

SBP-YOLO:A Lightweight Real-Time Model for Detecting Speed Bumps and Potholes

Published: August 2, 2025 | arXiv ID: 2508.01339v2

By: Chuanqi Liang , Jie Fu , Miao Yu and more

Potential Business Impact:

Helps cars spot bumps and holes instantly.

Reliable and real-time detection of road speed bumps and potholes is crucial for anticipatory perception in advanced suspension systems, enabling timely and adaptive damping control. Achieving high accuracy and efficiency on embedded platforms remains challenging due to limited computational resources and the small scale of distant targets. This paper presents SBP-YOLO, a lightweight and high-speed detection framework tailored for bump and pothole recognition. Based on YOLOv11n, the model integrates GhostConv and VoVGSCSPC modules into the backbone and neck to reduce computation while enhancing multi-scale semantic features. To improve small-object detection, a P2-level branch is introduced with a lightweight and efficient detection head LEDH mitigating the added computational overhead without compromising accuracy. A hybrid training strategy combining NWD loss, backbone-level knowledge distillation, and Albumentations-driven augmentation further enhances localization precision and robustness. Experiments show that SBP-YOLO achieves 87.0 percent mAP, outperforming the YOLOv11n baseline by 5.8 percent. After TensorRT FP16 quantization, it runs at 139.5 FPS on Jetson AGX Xavier, delivering a 12.4 percent speedup over the P2-enhanced YOLOv11. These results validate the effectiveness of the proposed method for fast and low-latency road condition perception in embedded suspension control systems.

Country of Origin
🇨🇳 China

Page Count
14 pages

Category
Computer Science:
CV and Pattern Recognition