Score: 1

Predicting Video Slot Attention Queries from Random Slot-Feature Pairs

Published: August 2, 2025 | arXiv ID: 2508.01345v1

By: Rongzhen Zhao , Jian Li , Juho Kannala and more

Potential Business Impact:

Helps computers understand moving objects in videos.

Unsupervised video Object-Centric Learning (OCL) is promising as it enables object-level scene representation and dynamics modeling as we humans do. Mainstream video OCL methods adopt a recurrent architecture: An aggregator aggregates current video frame into object features, termed slots, under some queries; A transitioner transits current slots to queries for the next frame. This is an effective architecture but all existing implementations both (\textit{i1}) neglect to incorporate next frame features, the most informative source for query prediction, and (\textit{i2}) fail to learn transition dynamics, the knowledge essential for query prediction. To address these issues, we propose Random Slot-Feature pair for learning Query prediction (RandSF.Q): (\textit{t1}) We design a new transitioner to incorporate both slots and features, which provides more information for query prediction; (\textit{t2}) We train the transitioner to predict queries from slot-feature pairs randomly sampled from available recurrences, which drives it to learn transition dynamics. Experiments on scene representation demonstrate that our method surpass existing video OCL methods significantly, e.g., up to 10 points on object discovery, setting new state-of-the-art. Such superiority also benefits downstream tasks like dynamics modeling. Our core source code and training logs are available as the supplement.

Country of Origin
🇫🇮 Finland

Page Count
9 pages

Category
Computer Science:
CV and Pattern Recognition