Score: 0

InspectVLM: Unified in Theory, Unreliable in Practice

Published: August 3, 2025 | arXiv ID: 2508.01921v1

By: Conor Wallace, Isaac Corley, Jonathan Lwowski

Potential Business Impact:

Makes computers see and understand factory flaws.

Unified vision-language models (VLMs) promise to streamline computer vision pipelines by reframing multiple visual tasks such as classification, detection, and keypoint localization within a single language-driven interface. This architecture is particularly appealing in industrial inspection, where managing disjoint task-specific models introduces complexity, inefficiency, and maintenance overhead. In this paper, we critically evaluate the viability of this unified paradigm using InspectVLM, a Florence-2-based VLM trained on InspectMM, our new large-scale multimodal, multitask inspection dataset. While InspectVLM performs competitively on image-level classification and structured keypoint tasks, we find that it fails to match traditional ResNet-based models in core inspection metrics. Notably, the model exhibits brittle behavior under low prompt variability, produces degenerate outputs for fine-grained object detection, and frequently defaults to memorized language responses regardless of visual input. Our findings suggest that while language-driven unification offers conceptual elegance, current VLMs lack the visual grounding and robustness necessary for deployment in precision critical industrial inspections.

Page Count
9 pages

Category
Computer Science:
CV and Pattern Recognition