Score: 0

Convolutions are Competitive with Transformers for Encrypted Traffic Classification with Pre-training

Published: August 4, 2025 | arXiv ID: 2508.02001v1

By: Chungang Lin , Weiyao Zhang , Tianyu Zuo and more

Potential Business Impact:

Helps computers understand internet traffic faster.

Encrypted traffic classification is vital for modern network management and security. To reduce reliance on handcrafted features and labeled data, recent methods focus on learning generic representations through pre-training on large-scale unlabeled data. However, current pre-trained models face two limitations originating from the adopted Transformer architecture: (1) Limited model efficiency due to the self-attention mechanism with quadratic complexity; (2) Unstable traffic scalability to longer byte sequences, as the explicit positional encodings fail to generalize to input lengths not seen during pre-training. In this paper, we investigate whether convolutions, with linear complexity and implicit positional encoding, are competitive with Transformers in encrypted traffic classification with pre-training. We first conduct a systematic comparison, and observe that convolutions achieve higher efficiency and scalability, with lower classification performance. To address this trade-off, we propose NetConv, a novel pre-trained convolution model for encrypted traffic classification. NetConv employs stacked traffic convolution layers, which enhance the ability to capture localized byte-sequence patterns through window-wise byte scoring and sequence-wise byte gating. We design a continuous byte masking pre-training task to help NetConv learn protocol-specific patterns. Experimental results on four tasks demonstrate that NetConv improves average classification performance by 6.88% and model throughput by 7.41X over existing pre-trained models.

Page Count
10 pages

Category
Computer Science:
Networking and Internet Architecture