Score: 0

Unsupervised Multi-channel Speech Dereverberation via Diffusion

Published: August 4, 2025 | arXiv ID: 2508.02071v1

By: Yulun Wu , Zhongweiyang Xu , Jianchong Chen and more

Potential Business Impact:

Clears echoes from voices in recordings.

We consider the problem of multi-channel single-speaker blind dereverberation, where multi-channel mixtures are used to recover the clean anechoic speech. To solve this problem, we propose USD-DPS, {U}nsupervised {S}peech {D}ereverberation via {D}iffusion {P}osterior {S}ampling. USD-DPS uses an unconditional clean speech diffusion model as a strong prior to solve the problem by posterior sampling. At each diffusion sampling step, we estimate all microphone channels' room impulse responses (RIRs), which are further used to enforce a multi-channel mixture consistency constraint for diffusion guidance. For multi-channel RIR estimation, we estimate reference-channel RIR by optimizing RIR parameters of a sub-band RIR signal model, with the Adam optimizer. We estimate non-reference channels' RIRs analytically using forward convolutive prediction (FCP). We found that this combination provides a good balance between sampling efficiency and RIR prior modeling, which shows superior performance among unsupervised dereverberation approaches. An audio demo page is provided in https://usddps.github.io/USDDPS_demo/.

Page Count
6 pages

Category
Computer Science:
Sound