Score: 1

CIVQLLIE: Causal Intervention with Vector Quantization for Low-Light Image Enhancement

Published: August 5, 2025 | arXiv ID: 2508.03338v1

By: Tongshun Zhang , Pingping Liu , Zhe Zhang and more

Potential Business Impact:

Makes dark pictures clear and bright.

Images captured in nighttime scenes suffer from severely reduced visibility, hindering effective content perception. Current low-light image enhancement (LLIE) methods face significant challenges: data-driven end-to-end mapping networks lack interpretability or rely on unreliable prior guidance, struggling under extremely dark conditions, while physics-based methods depend on simplified assumptions that often fail in complex real-world scenarios. To address these limitations, we propose CIVQLLIE, a novel framework that leverages the power of discrete representation learning through causal reasoning. We achieve this through Vector Quantization (VQ), which maps continuous image features to a discrete codebook of visual tokens learned from large-scale high-quality images. This codebook serves as a reliable prior, encoding standardized brightness and color patterns that are independent of degradation. However, direct application of VQ to low-light images fails due to distribution shifts between degraded inputs and the learned codebook. Therefore, we propose a multi-level causal intervention approach to systematically correct these shifts. First, during encoding, our Pixel-level Causal Intervention (PCI) module intervenes to align low-level features with the brightness and color distributions expected by the codebook. Second, a Feature-aware Causal Intervention (FCI) mechanism with Low-frequency Selective Attention Gating (LSAG) identifies and enhances channels most affected by illumination degradation, facilitating accurate codebook token matching while enhancing the encoder's generalization performance through flexible feature-level intervention. Finally, during decoding, the High-frequency Detail Reconstruction Module (HDRM) leverages structural information preserved in the matched codebook representations to reconstruct fine details using deformable convolution techniques.

Country of Origin
🇨🇳 China

Repos / Data Links

Page Count
18 pages

Category
Computer Science:
CV and Pattern Recognition