Score: 0

PRISM: Lightweight Multivariate Time-Series Classification through Symmetric Multi-Resolution Convolutional Layers

Published: August 6, 2025 | arXiv ID: 2508.04503v1

By: Federico Zucchi, Thomas Lampert

Potential Business Impact:

Makes computers understand body signals better, faster.

Multivariate time-series classification is pivotal in domains ranging from wearable sensing to biomedical monitoring. Despite recent advances, Transformer- and CNN-based models often remain computationally heavy, offer limited frequency diversity, and require extensive parameter budgets. We propose PRISM (Per-channel Resolution-Informed Symmetric Module), a convolutional-based feature extractor that applies symmetric finite-impulse-response (FIR) filters at multiple temporal scales, independently per channel. This multi-resolution, per-channel design yields highly frequency-selective embeddings without any inter-channel convolutions, greatly reducing model size and complexity. Across human-activity, sleep-stage and biomedical benchmarks, PRISM, paired with lightweight classification heads, matches or outperforms leading CNN and Transformer baselines, while using roughly an order of magnitude fewer parameters and FLOPs. By uniting classical signal processing insights with modern deep learning, PRISM offers an accurate, resource-efficient solution for multivariate time-series classification.

Country of Origin
🇫🇷 France

Page Count
12 pages

Category
Computer Science:
Machine Learning (CS)