Score: 1

Steering One-Step Diffusion Model with Fidelity-Rich Decoder for Fast Image Compression

Published: August 7, 2025 | arXiv ID: 2508.04979v1

By: Zheng Chen , Mingde Zhou , Jinpei Guo and more

Potential Business Impact:

Makes pictures load super fast, looking great.

Diffusion-based image compression has demonstrated impressive perceptual performance. However, it suffers from two critical drawbacks: (1) excessive decoding latency due to multi-step sampling, and (2) poor fidelity resulting from over-reliance on generative priors. To address these issues, we propose SODEC, a novel single-step diffusion image compression model. We argue that in image compression, a sufficiently informative latent renders multi-step refinement unnecessary. Based on this insight, we leverage a pre-trained VAE-based model to produce latents with rich information, and replace the iterative denoising process with a single-step decoding. Meanwhile, to improve fidelity, we introduce the fidelity guidance module, encouraging output that is faithful to the original image. Furthermore, we design the rate annealing training strategy to enable effective training under extremely low bitrates. Extensive experiments show that SODEC significantly outperforms existing methods, achieving superior rate-distortion-perception performance. Moreover, compared to previous diffusion-based compression models, SODEC improves decoding speed by more than 20$\times$. Code is released at: https://github.com/zhengchen1999/SODEC.

Repos / Data Links

Page Count
9 pages

Category
Computer Science:
CV and Pattern Recognition