Score: 0

Computational Design and Fabrication of Modular Robots with Untethered Control

Published: August 7, 2025 | arXiv ID: 2508.05410v2

By: Manas Bhargava , Takefumi Hiraki , Malina Strugaru and more

Potential Business Impact:

Robots change shape and move like living things.

Natural organisms utilize distributed actuation through their musculoskeletal systems to adapt their gait for traversing diverse terrains or to morph their bodies for varied tasks. A longstanding challenge in robotics is to emulate this capability of natural organisms, which has motivated the development of numerous soft robotic systems. However, such systems are generally optimized for a single functionality, lack the ability to change form or function on demand, or remain tethered to bulky control systems. To address these limitations, we present a framework for designing and controlling robots that utilize distributed actuation. We propose a novel building block that integrates 3D-printed bones with liquid crystal elastomer (LCE) muscles as lightweight actuators, enabling the modular assembly of musculoskeletal robots. We developed LCE rods that contract in response to infrared radiation, thereby providing localized, untethered control over the distributed skeletal network and producing global deformations of the robot. To fully capitalize on the extensive design space, we introduce two computational tools: one for optimizing the robot's skeletal graph to achieve multiple target deformations, and another for co-optimizing skeletal designs and control gaits to realize desired locomotion. We validate our framework by constructing several robots that demonstrate complex shape morphing, diverse control schemes, and environmental adaptability. Our system integrates advances in modular material building, untethered and distributed control, and computational design to introduce a new generation of robots that brings us closer to the capabilities of living organisms.

Country of Origin
🇦🇹 Austria

Page Count
38 pages

Category
Computer Science:
Robotics