UniMove: A Unified Model for Multi-city Human Mobility Prediction
By: Chonghua Han , Yuan Yuan , Yukun Liu and more
Potential Business Impact:
Predicts where people will go in any city.
Human mobility prediction is vital for urban planning, transportation optimization, and personalized services. However, the inherent randomness, non-uniform time intervals, and complex patterns of human mobility, compounded by the heterogeneity introduced by varying city structures, infrastructure, and population densities, present significant challenges in modeling. Existing solutions often require training separate models for each city due to distinct spatial representations and geographic coverage. In this paper, we propose UniMove, a unified model for multi-city human mobility prediction, addressing two challenges: (1) constructing universal spatial representations for effective token sharing across cities, and (2) modeling heterogeneous mobility patterns from varying city characteristics. We propose a trajectory-location dual-tower architecture, with a location tower for universal spatial encoding and a trajectory tower for sequential mobility modeling. We also design MoE Transformer blocks to adaptively select experts to handle diverse movement patterns. Extensive experiments across multiple datasets from diverse cities demonstrate that UniMove truly embodies the essence of a unified model. By enabling joint training on multi-city data with mutual data enhancement, it significantly improves mobility prediction accuracy by over 10.2\%. UniMove represents a key advancement toward realizing a true foundational model with a unified architecture for human mobility. We release the implementation at https://github.com/tsinghua-fib-lab/UniMove/.
Similar Papers
A Unified Model for Human Mobility Generation in Natural Disasters
Social and Information Networks
Helps predict where people go during disasters.
Learning Universal Human Mobility Patterns with a Foundation Model for Cross-domain Data Fusion
Machine Learning (CS)
Helps cities plan roads and traffic better.
TrajMoE: Spatially-Aware Mixture of Experts for Unified Human Mobility Modeling
Artificial Intelligence
Helps predict city travel patterns anywhere.