Score: 1

DIP-GS: Deep Image Prior For Gaussian Splatting Sparse View Recovery

Published: August 10, 2025 | arXiv ID: 2508.07372v1

By: Rajaei Khatib, Raja Giryes

Potential Business Impact:

Makes 3D pictures from few photos.

3D Gaussian Splatting (3DGS) is a leading 3D scene reconstruction method, obtaining high-quality reconstruction with real-time rendering runtime performance. The main idea behind 3DGS is to represent the scene as a collection of 3D gaussians, while learning their parameters to fit the given views of the scene. While achieving superior performance in the presence of many views, 3DGS struggles with sparse view reconstruction, where the input views are sparse and do not fully cover the scene and have low overlaps. In this paper, we propose DIP-GS, a Deep Image Prior (DIP) 3DGS representation. By using the DIP prior, which utilizes internal structure and patterns, with coarse-to-fine manner, DIP-based 3DGS can operate in scenarios where vanilla 3DGS fails, such as sparse view recovery. Note that our approach does not use any pre-trained models such as generative models and depth estimation, but rather relies only on the input frames. Among such methods, DIP-GS obtains state-of-the-art (SOTA) competitive results on various sparse-view reconstruction tasks, demonstrating its capabilities.

Country of Origin
🇮🇱 Israel

Page Count
13 pages

Category
Computer Science:
CV and Pattern Recognition