A Physics-informed Deep Operator for Real-Time Freeway Traffic State Estimation
By: Hongxin Yu , Yibing Wang , Fengyue Jin and more
Potential Business Impact:
Helps cars know traffic speed and flow better.
Traffic state estimation (TSE) falls methodologically into three categories: model-driven, data-driven, and model-data dual-driven. Model-driven TSE relies on macroscopic traffic flow models originated from hydrodynamics. Data-driven TSE leverages historical sensing data and employs statistical models or machine learning methods to infer traffic state. Model-data dual-driven traffic state estimation attempts to harness the strengths of both aspects to achieve more accurate TSE. From the perspective of mathematical operator theory, TSE can be viewed as a type of operator that maps available measurements of inerested traffic state into unmeasured traffic state variables in real time. For the first time this paper proposes to study real-time freeway TSE in the idea of physics-informed deep operator network (PI-DeepONet), which is an operator-oriented architecture embedding traffic flow models based on deep neural networks. The paper has developed an extended architecture from the original PI-DeepONet. The extended architecture is featured with: (1) the acceptance of 2-D data input so as to support CNN-based computations; (2) the introduction of a nonlinear expansion layer, an attention mechanism, and a MIMO mechanism; (3) dedicated neural network design for adaptive identification of traffic flow model parameters. A traffic state estimator built on the basis of this extended PI-DeepONet architecture was evaluated with respect to a short freeway stretch of NGSIM and a large-scale urban expressway in China, along with other four baseline TSE methods. The evaluation results demonstrated that this novel TSE method outperformed the baseline methods with high-precision estimation results of flow and mean speed.
Similar Papers
Physics-informed deep operator network for traffic state estimation
Machine Learning (CS)
Helps self-driving cars understand traffic flow.
Physics-Embedded Gaussian Process for Traffic State Estimation
Machine Learning (CS)
Helps cars understand traffic better with less data.
Machine Unlearning of Traffic State Estimation and Prediction
Machine Learning (CS)
Cleans traffic prediction models of old or private data.