Score: 1

Towards Scalable Training for Handwritten Mathematical Expression Recognition

Published: August 11, 2025 | arXiv ID: 2508.09220v3

By: Haoyang Li , Jiaqing Li , Jialun Cao and more

Potential Business Impact:

Helps computers read math written by hand.

Large foundation models have achieved significant performance gains through scalable training on massive datasets. However, the field of \textbf{H}andwritten \textbf{M}athematical \textbf{E}xpression \textbf{R}ecognition (HMER) has been impeded by the scarcity of data, primarily due to the arduous and costly process of manual annotation. To bridge this gap, we propose a novel method integrating limited handwritten formulas with large-scale LaTeX-rendered formulas by developing a scalable data engine to generate complex and consistent LaTeX sequences. With this engine, we built the largest formula dataset to date, termed \texttt{Tex80M}, comprising over 80 million high-quality training instances. Then we propose \texttt{TexTeller}, the first HMER model trained at scale, by mix-training \texttt{Tex80M} with a relatively small HME dataset. The expansive training dataset and our refined pipeline have equipped \texttt{TexTeller} with state-of-the-art (SOTA) performance across nearly all benchmarks. To advance the field, we will openly release our complete model, entire dataset, and full codebase, enabling further research building upon our contributions.

Page Count
15 pages

Category
Computer Science:
CV and Pattern Recognition