Score: 0

Resurrecting the Salmon: Rethinking Mechanistic Interpretability with Domain-Specific Sparse Autoencoders

Published: August 12, 2025 | arXiv ID: 2508.09363v1

By: Charles O'Neill, Mudith Jayasekara, Max Kirkby

Potential Business Impact:

Helps AI understand medical words better.

Sparse autoencoders (SAEs) decompose large language model (LLM) activations into latent features that reveal mechanistic structure. Conventional SAEs train on broad data distributions, forcing a fixed latent budget to capture only high-frequency, generic patterns. This often results in significant linear ``dark matter'' in reconstruction error and produces latents that fragment or absorb each other, complicating interpretation. We show that restricting SAE training to a well-defined domain (medical text) reallocates capacity to domain-specific features, improving both reconstruction fidelity and interpretability. Training JumpReLU SAEs on layer-20 activations of Gemma-2 models using 195k clinical QA examples, we find that domain-confined SAEs explain up to 20\% more variance, achieve higher loss recovery, and reduce linear residual error compared to broad-domain SAEs. Automated and human evaluations confirm that learned features align with clinically meaningful concepts (e.g., ``taste sensations'' or ``infectious mononucleosis''), rather than frequent but uninformative tokens. These domain-specific SAEs capture relevant linear structure, leaving a smaller, more purely nonlinear residual. We conclude that domain-confinement mitigates key limitations of broad-domain SAEs, enabling more complete and interpretable latent decompositions, and suggesting the field may need to question ``foundation-model'' scaling for general-purpose SAEs.

Page Count
23 pages

Category
Computer Science:
Machine Learning (CS)