LLMCARE: Alzheimer's Detection via Transformer Models Enhanced by LLM-Generated Synthetic Data
By: Ali Zolnour , Hossein Azadmaleki , Yasaman Haghbin and more
Potential Business Impact:
Finds early signs of memory loss in voices.
Alzheimer's disease and related dementias (ADRD) affect approximately five million older adults in the U.S., yet over half remain undiagnosed. Speech-based natural language processing (NLP) offers a promising, scalable approach to detect early cognitive decline through linguistic markers. To develop and evaluate a screening pipeline that (i) fuses transformer embeddings with handcrafted linguistic features, (ii) tests data augmentation using synthetic speech generated by large language models (LLMs), and (iii) benchmarks unimodal and multimodal LLM classifiers for ADRD detection. Transcripts from the DementiaBank "cookie-theft" task (n = 237) were used. Ten transformer models were evaluated under three fine-tuning strategies. A fusion model combined embeddings from the top-performing transformer with 110 lexical-derived linguistic features. Five LLMs (LLaMA-8B/70B, MedAlpaca-7B, Ministral-8B, GPT-4o) were fine-tuned to generate label-conditioned synthetic speech, which was used to augment training data. Three multimodal models (GPT-4o, Qwen-Omni, Phi-4) were tested for speech-text classification in zero-shot and fine-tuned settings. The fusion model achieved F1 = 83.3 (AUC = 89.5), outperforming linguistic or transformer-only baselines. Augmenting training data with 2x MedAlpaca-7B synthetic speech increased F1 to 85.7. Fine-tuning significantly improved unimodal LLM classifiers (e.g., MedAlpaca: F1 = 47.3 -> 78.5 F1). Current multimodal models demonstrated lower performance (GPT-4o = 70.2 F1; Qwen = 66.0). Performance gains aligned with the distributional similarity between synthetic and real speech. Integrating transformer embeddings with linguistic features enhances ADRD detection from speech. Clinically tuned LLMs effectively support both classification and data augmentation, while further advancement is needed in multimodal modeling.
Similar Papers
Pretraining Transformer-Based Models on Diffusion-Generated Synthetic Graphs for Alzheimer's Disease Prediction
Machine Learning (CS)
Helps find Alzheimer's disease earlier with AI.
AD-GPT: Large Language Models in Alzheimer's Disease
Computation and Language
Helps find clues for Alzheimer's disease.
Alzheimer's Dementia Detection Using Perplexity from Paired Large Language Models
Computation and Language
Finds Alzheimer's by how people talk.