Score: 1

UAV-VL-R1: Generalizing Vision-Language Models via Supervised Fine-Tuning and Multi-Stage GRPO for UAV Visual Reasoning

Published: August 15, 2025 | arXiv ID: 2508.11196v1

By: Jiajin Guan , Haibo Mei , Bonan Zhang and more

Potential Business Impact:

Helps drones understand pictures faster and better.

Recent advances in vision-language models (VLMs) have demonstrated strong generalization in natural image tasks. However, their performance often degrades on unmanned aerial vehicle (UAV)-based aerial imagery, which features high resolution, complex spatial semantics, and strict real-time constraints. These challenges limit the applicability of general-purpose VLMs to structured aerial reasoning tasks. To address these challenges, we propose UAV-VL-R1, a lightweight VLM explicitly designed for aerial visual reasoning. It is trained using a hybrid method that combines supervised fine-tuning (SFT) and multi-stage reinforcement learning (RL). We leverage the group relative policy optimization (GRPO) algorithm to promote structured and interpretable reasoning through rule-guided rewards and intra-group policy alignment. To support model training and evaluation, we introduce a high-resolution visual question answering dataset named HRVQA-VL, which consists of 50,019 annotated samples covering eight UAV-relevant reasoning tasks, including object counting, transportation recognition, and spatial scene inference. Experimental results show that UAV-VL-R1 achieves a 48.17% higher zero-shot accuracy than the Qwen2-VL-2B-Instruct baseline and even outperforms its 72B-scale variant, which is 36x larger, on multiple tasks. Ablation studies reveal that while SFT improves semantic alignment, it may reduce reasoning diversity in mathematical tasks. GRPO-based RL compensates for this limitation by enhancing logical flexibility and the robustness of inference. Additionally, UAV-VL-R1 requires only 3.9GB of memory under FP16 inference and can be quantized to 2.5GB with INT8, supporting real-time deployment on resource-constrained UAV platforms.

Country of Origin
🇨🇳 China

Repos / Data Links

Page Count
11 pages

Category
Computer Science:
CV and Pattern Recognition