SelfAdapt: Unsupervised Domain Adaptation of Cell Segmentation Models
By: Fabian H. Reith , Jannik Franzen , Dinesh R. Palli and more
Potential Business Impact:
Helps AI find cells without needing human help.
Deep neural networks have become the go-to method for biomedical instance segmentation. Generalist models like Cellpose demonstrate state-of-the-art performance across diverse cellular data, though their effectiveness often degrades on domains that differ from their training data. While supervised fine-tuning can address this limitation, it requires annotated data that may not be readily available. We propose SelfAdapt, a method that enables the adaptation of pre-trained cell segmentation models without the need for labels. Our approach builds upon student-teacher augmentation consistency training, introducing L2-SP regularization and label-free stopping criteria. We evaluate our method on the LiveCell and TissueNet datasets, demonstrating relative improvements in AP0.5 of up to 29.64% over baseline Cellpose. Additionally, we show that our unsupervised adaptation can further improve models that were previously fine-tuned with supervision. We release SelfAdapt as an easy-to-use extension of the Cellpose framework. The code for our method is publicly available at https: //github.com/Kainmueller-Lab/self_adapt.
Similar Papers
Unified and Semantically Grounded Domain Adaptation for Medical Image Segmentation
CV and Pattern Recognition
Helps doctors see body parts in scans better.
Unified and Semantically Grounded Domain Adaptation for Medical Image Segmentation
CV and Pattern Recognition
Helps doctors see body parts in scans better.
ADAptation: Reconstruction-based Unsupervised Active Learning for Breast Ultrasound Diagnosis
CV and Pattern Recognition
Helps AI learn from different medical pictures.