A Comprehensive Review of AI Agents: Transforming Possibilities in Technology and Beyond
By: Xiaodong Qu , Andrews Damoah , Joshua Sherwood and more
Potential Business Impact:
Makes smart computer helpers understand and act.
Artificial Intelligence (AI) agents have rapidly evolved from specialized, rule-based programs to versatile, learning-driven autonomous systems capable of perception, reasoning, and action in complex environments. The explosion of data, advances in deep learning, reinforcement learning, and multi-agent coordination have accelerated this transformation. Yet, designing and deploying unified AI agents that seamlessly integrate cognition, planning, and interaction remains a grand challenge. In this review, we systematically examine the architectural principles, foundational components, and emergent paradigms that define the landscape of contemporary AI agents. We synthesize insights from cognitive science-inspired models, hierarchical reinforcement learning frameworks, and large language model-based reasoning. Moreover, we discuss the pressing ethical, safety, and interpretability concerns associated with deploying these agents in real-world scenarios. By highlighting major breakthroughs, persistent challenges, and promising research directions, this review aims to guide the next generation of AI agent systems toward more robust, adaptable, and trustworthy autonomous intelligence.
Similar Papers
Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems
Artificial Intelligence
Builds smarter robots that learn and work together.
Agentic AI: A Comprehensive Survey of Architectures, Applications, and Future Directions
Artificial Intelligence
Organizes AI into two types for better building.
A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems
Artificial Intelligence
AI agents learn and improve themselves over time.