Score: 0

An optimal experimental design approach to sensor placement in continuous stochastic filtering

Published: August 17, 2025 | arXiv ID: 2508.12288v1

By: Sahani Pathiraja, Claudia Schillings, Philipp Wacker

Potential Business Impact:

Finds best places to put sensors for more information.

Sequential filtering and spatial inverse problems assimilate data points distributed either temporally (in the case of filtering) or spatially (in the case of spatial inverse problems). Sometimes it is possible to choose the position of these data points (which we call sensors here) in advance, with the goal of maximising the expected information gain (or a different metric of performance) from future data, and this leads to an Optimal Experimental Design (OED) problem. Here we revisit an interpretation of optimising sensor placement as an integration with respect to a general probability measure $\xi$. This generalises the problem of discrete-time sensor placement (which corresponds to the special case where the probability measure is a mixture of Diracs) to an infinite-dimensional, but mathematically more well-behaved setting. We focus on the continuous-time stochastic filtering setting, whose solution is governed by the Zakai equation. We derive an expression for the Fr\'echet derivative of a general OED utility functional, the key to which is an adjoint (backwards in time) differential equation. This paves the way for utilising new gradient-based methods for solving the corresponding optimisation problem, as a potentially more efficient alternative to (semi-)discrete optimisation methods, e.g. based on greedy insertion and deletion of sensor placements.

Page Count
24 pages

Category
Mathematics:
Statistics Theory