Score: 0

DLLMQuant: Quantizing Diffusion-based Large Language Models

Published: August 14, 2025 | arXiv ID: 2508.14090v2

By: Chen Xu, Dawei Yang

Potential Business Impact:

Makes AI write faster and smaller.

Diffusion-based large language models (DLLMs) have shown promise for non-autoregressive text generation, but their deployment is constrained by large model sizes and heavy computational costs. Post-training quantization (PTQ), a widely used method for compressing and accelerating Large Language Models (LLMs), suffers from severe accuracy degradation and reduced generalization performance when directly applied to DLLMs (e.g., AWQ suffers a 16% accuracy drop on LLADA under W4A4). This paper explores how DLLMs' key mechanisms - dynamic masking, iterative generation, bidirectional attention - clash with quantization. We identify three core issues: 1) Iterative generation and dynamic masking ratios lead to distinct token distributions across decoding steps, which are not adequately captured by existing PTQ calibration methods; 2) Quantization errors are accumulated and amplified progressively during iteration in DLLMs, causing quantized models to perform worse as decoding steps progress; 3) Unmasked tokens stabilize while masked remain probabilistic, making overall feature distribution incompatible with existing PTQ methods. To address these issues, we propose DLLMQuant, a PTQ framework tailored for DLLMs, which incorporates three novel techniques: 1) Temporal-Mask Adaptive Sampling (TMAS), a calibration method that accounts for both time and mask factors, with the capacity to capture distributions across timesteps. 2) Interaction-Aware Activation Quantization (IA-AQ), which utilizes bidirectional attention's interaction signals to dynamically allocate quantization resources. 3) Certainty-Guided Quantization (CGQ), which integrates mask status and token scores as key weighting criteria into error compensation, making weight quantization more suitable for DLLMs. Experiments show that DLLMQuant achieves significant performance gains while enhancing efficiency.

Page Count
13 pages

Category
Computer Science:
Computation and Language