Implicit Hypergraph Neural Network
By: Akash Choudhuri, Yongjian Zhong, Bijaya Adhikari
Potential Business Impact:
Helps computers understand complex connections better.
Hypergraphs offer a generalized framework for capturing high-order relationships between entities and have been widely applied in various domains, including healthcare, social networks, and bioinformatics. Hypergraph neural networks, which rely on message-passing between nodes over hyperedges to learn latent representations, have emerged as the method of choice for predictive tasks in many of these domains. These approaches typically perform only a small number of message-passing rounds to learn the representations, which they then utilize for predictions. The small number of message-passing rounds comes at a cost, as the representations only capture local information and forego long-range high-order dependencies. However, as we demonstrate, blindly increasing the message-passing rounds to capture long-range dependency also degrades the performance of hyper-graph neural networks. Recent works have demonstrated that implicit graph neural networks capture long-range dependencies in standard graphs while maintaining performance. Despite their popularity, prior work has not studied long-range dependency issues on hypergraph neural networks. Here, we first demonstrate that existing hypergraph neural networks lose predictive power when aggregating more information to capture long-range dependency. We then propose Implicit Hypergraph Neural Network (IHNN), a novel framework that jointly learns fixed-point representations for both nodes and hyperedges in an end-to-end manner to alleviate this issue. Leveraging implicit differentiation, we introduce a tractable projected gradient descent approach to train the model efficiently. Extensive experiments on real-world hypergraphs for node classification demonstrate that IHNN outperforms the closest prior works in most settings, establishing a new state-of-the-art in hypergraph learning.
Similar Papers
Implicit Hypergraph Neural Networks: A Stable Framework for Higher-Order Relational Learning with Provable Guarantees
Machine Learning (CS)
Helps computers understand group connections better.
Modeling Hypergraph Using Large Language Models
Social and Information Networks
AI creates realistic data for complex connections.
Recent Advances in Hypergraph Neural Networks
Machine Learning (CS)
Helps computers understand complex connections better.