Explainable Information Design
By: Yiling Chen , Tao Lin , Wei Tang and more
Potential Business Impact:
Makes complex information easier to understand.
The optimal signaling schemes in information design (Bayesian persuasion) problems often involve non-explainable randomization or disconnected partitions of state space, which are too intricate to be audited or communicated. We propose explainable information design in the context of information design with a continuous state space, restricting the information designer to use $K$-partitional signaling schemes defined by deterministic and monotone partitions of the state space, where a unique signal is sent for all states in each part. We first prove that the price of explainability (PoE) -- the ratio between the performances of the optimal explainable signaling scheme and unrestricted signaling scheme -- is exactly $1/2$ in the worst case, meaning that partitional signaling schemes are never worse than arbitrary signaling schemes by a factor of 2. We then study the complexity of computing optimal explainable signaling schemes. We show that the exact optimization problem is NP-hard in general. But for Lipschitz utility functions, an $\varepsilon$-approximately optimal explainable signaling scheme can be computed in polynomial time. And for piecewise constant utility functions, we provide an efficient algorithm to find an explainable signaling scheme that provides a $1/2$ approximation to the optimal unrestricted signaling scheme, which matches the worst-case PoE bound. A technical tool we develop is a conversion from any optimal signaling scheme (which satisfies a bi-pooling property) to a partitional signaling scheme that achieves $1/2$ fraction of the expected utility of the former. We use this tool in the proofs of both our PoE result and algorithmic result.
Similar Papers
Designing Inferable Signaling Schemes for Bayesian Persuasion
CS and Game Theory
Helps people send better secret messages.
Persuading Stable Matching
CS and Game Theory
Helps people find best matches by shaping beliefs.
Information Design for Adaptive Organizations
Theoretical Economics
Helps teams work together better by sharing smart info.