Score: 0

MCPTox: A Benchmark for Tool Poisoning Attack on Real-World MCP Servers

Published: August 19, 2025 | arXiv ID: 2508.14925v1

By: Zhiqiang Wang , Yichao Gao , Yanting Wang and more

Potential Business Impact:

Protects smart AI from bad tool instructions.

Business Areas:
Penetration Testing Information Technology, Privacy and Security

By providing a standardized interface for LLM agents to interact with external tools, the Model Context Protocol (MCP) is quickly becoming a cornerstone of the modern autonomous agent ecosystem. However, it creates novel attack surfaces due to untrusted external tools. While prior work has focused on attacks injected through external tool outputs, we investigate a more fundamental vulnerability: Tool Poisoning, where malicious instructions are embedded within a tool's metadata without execution. To date, this threat has been primarily demonstrated through isolated cases, lacking a systematic, large-scale evaluation. We introduce MCPTox, the first benchmark to systematically evaluate agent robustness against Tool Poisoning in realistic MCP settings. MCPTox is constructed upon 45 live, real-world MCP servers and 353 authentic tools. To achieve this, we design three distinct attack templates to generate a comprehensive suite of 1312 malicious test cases by few-shot learning, covering 10 categories of potential risks. Our evaluation on 20 prominent LLM agents setting reveals a widespread vulnerability to Tool Poisoning, with o1-mini, achieving an attack success rate of 72.8\%. We find that more capable models are often more susceptible, as the attack exploits their superior instruction-following abilities. Finally, the failure case analysis reveals that agents rarely refuse these attacks, with the highest refused rate (Claude-3.7-Sonnet) less than 3\%, demonstrating that existing safety alignment is ineffective against malicious actions that use legitimate tools for unauthorized operation. Our findings create a crucial empirical baseline for understanding and mitigating this widespread threat, and we release MCPTox for the development of verifiably safer AI agents. Our dataset is available at an anonymized repository: \textit{https://anonymous.4open.science/r/AAAI26-7C02}.

Page Count
9 pages

Category
Computer Science:
Cryptography and Security