Score: 0

Equi-mRNA: Protein Translation Equivariant Encoding for mRNA Language Models

Published: August 20, 2025 | arXiv ID: 2508.15103v1

By: Mehdi Yazdani-Jahromi, Ali Khodabandeh Yalabadi, Ozlem Ozmen Garibay

Potential Business Impact:

Designs better medicine using genetic code patterns.

Business Areas:
Bioinformatics Biotechnology, Data and Analytics, Science and Engineering

The growing importance of mRNA therapeutics and synthetic biology highlights the need for models that capture the latent structure of synonymous codon (different triplets encoding the same amino acid) usage, which subtly modulates translation efficiency and gene expression. While recent efforts incorporate codon-level inductive biases through auxiliary objectives, they often fall short of explicitly modeling the structured relationships that arise from the genetic code's inherent symmetries. We introduce Equi-mRNA, the first codon-level equivariant mRNA language model that explicitly encodes synonymous codon symmetries as cyclic subgroups of 2D Special Orthogonal matrix (SO(2)). By combining group-theoretic priors with an auxiliary equivariance loss and symmetry-aware pooling, Equi-mRNA learns biologically grounded representations that outperform vanilla baselines across multiple axes. On downstream property-prediction tasks including expression, stability, and riboswitch switching Equi-mRNA delivers up to approximately 10% improvements in accuracy. In sequence generation, it produces mRNA constructs that are up to approximately 4x more realistic under Frechet BioDistance metrics and approximately 28% better preserve functional properties compared to vanilla baseline. Interpretability analyses further reveal that learned codon-rotation distributions recapitulate known GC-content biases and tRNA abundance patterns, offering novel insights into codon usage. Equi-mRNA establishes a new biologically principled paradigm for mRNA modeling, with significant implications for the design of next-generation therapeutics.

Country of Origin
🇺🇸 United States

Page Count
34 pages

Category
Quantitative Biology:
Quantitative Methods