Score: 0

Enhancing Transformer-Based Foundation Models for Time Series Forecasting via Bagging, Boosting and Statistical Ensembles

Published: August 18, 2025 | arXiv ID: 2508.16641v1

By: Dhruv D. Modi, Rong Pan

Potential Business Impact:

Makes computer predictions of future events more accurate.

Time series foundation models (TSFMs) such as Lag-Llama, TimeGPT, Chronos, MOMENT, UniTS, and TimesFM have shown strong generalization and zero-shot capabilities for time series forecasting, anomaly detection, classification, and imputation. Despite these advantages, their predictions still suffer from variance, domain-specific bias, and limited uncertainty quantification when deployed on real operational data. This paper investigates a suite of statistical and ensemble-based enhancement techniques, including bootstrap-based bagging, regression-based stacking, prediction interval construction, statistical residual modeling, and iterative error feedback, to improve robustness and accuracy. Using the Belgium Electricity Short-Term Load Forecasting dataset as a case study, we demonstrate that the proposed hybrids consistently outperform standalone foundation models across multiple horizons. Regression-based ensembles achieve the lowest mean squared error; bootstrap aggregation markedly reduces long-context errors; residual modeling corrects systematic bias; and the resulting prediction intervals achieve near nominal coverage with widths shrinking as context length increases. The results indicate that integrating statistical reasoning with modern foundation models yields measurable gains in accuracy, reliability, and interpretability for real-world time series applications.

Page Count
17 pages

Category
Computer Science:
Machine Learning (CS)