Score: 1

From Classical Probabilistic Latent Variable Models to Modern Generative AI: A Unified Perspective

Published: August 18, 2025 | arXiv ID: 2508.16643v1

By: Tianhua Chen

Potential Business Impact:

Unifies AI tools by showing how they learn.

From large language models to multi-modal agents, Generative Artificial Intelligence (AI) now underpins state-of-the-art systems. Despite their varied architectures, many share a common foundation in probabilistic latent variable models (PLVMs), where hidden variables explain observed data for density estimation, latent reasoning, and structured inference. This paper presents a unified perspective by framing both classical and modern generative methods within the PLVM paradigm. We trace the progression from classical flat models such as probabilistic PCA, Gaussian mixture models, latent class analysis, item response theory, and latent Dirichlet allocation, through their sequential extensions including Hidden Markov Models, Gaussian HMMs, and Linear Dynamical Systems, to contemporary deep architectures: Variational Autoencoders as Deep PLVMs, Normalizing Flows as Tractable PLVMs, Diffusion Models as Sequential PLVMs, Autoregressive Models as Explicit Generative Models, and Generative Adversarial Networks as Implicit PLVMs. Viewing these architectures under a common probabilistic taxonomy reveals shared principles, distinct inference strategies, and the representational trade-offs that shape their strengths. We offer a conceptual roadmap that consolidates generative AI's theoretical foundations, clarifies methodological lineages, and guides future innovation by grounding emerging architectures in their probabilistic heritage.

Country of Origin
🇬🇧 United Kingdom

Page Count
31 pages

Category
Computer Science:
Machine Learning (CS)