Score: 0

UI-Level Evaluation of ALLaM 34B: Measuring an Arabic-Centric LLM via HUMAIN Chat

Published: August 24, 2025 | arXiv ID: 2508.17378v1

By: Omer Nacar

Potential Business Impact:

Helps computers understand and speak Arabic better.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Large language models (LLMs) trained primarily on English corpora often struggle to capture the linguistic and cultural nuances of Arabic. To address this gap, the Saudi Data and AI Authority (SDAIA) introduced the $ALLaM$ family of Arabic-focused models. The most capable of these available to the public, $ALLaM-34B$, was subsequently adopted by HUMAIN, who developed and deployed HUMAIN Chat, a closed conversational web service built on this model. This paper presents an expanded and refined UI-level evaluation of $ALLaM-34B$. Using a prompt pack spanning modern standard Arabic, five regional dialects, code-switching, factual knowledge, arithmetic and temporal reasoning, creative generation, and adversarial safety, we collected 115 outputs (23 prompts times 5 runs) and scored each with three frontier LLM judges (GPT-5, Gemini 2.5 Pro, Claude Sonnet-4). We compute category-level means with 95\% confidence intervals, analyze score distributions, and visualize dialect-wise metric heat maps. The updated analysis reveals consistently high performance on generation and code-switching tasks (both averaging 4.92/5), alongside strong results in MSA handling (4.74/5), solid reasoning ability (4.64/5), and improved dialect fidelity (4.21/5). Safety-related prompts show stable, reliable performance of (4.54/5). Taken together, these results position $ALLaM-34B$ as a robust and culturally grounded Arabic LLM, demonstrating both technical strength and practical readiness for real-world deployment.

Country of Origin
πŸ‡ΈπŸ‡¦ Saudi Arabia

Page Count
6 pages

Category
Computer Science:
Computation and Language