Score: 1

Copyright Protection for 3D Molecular Structures with Watermarking

Published: August 25, 2025 | arXiv ID: 2508.17702v1

By: Runwen Hu , Peilin Chen , Keyan Ding and more

Potential Business Impact:

Marks AI-made molecules to prove ownership.

Business Areas:
Bioinformatics Biotechnology, Data and Analytics, Science and Engineering

Artificial intelligence (AI) revolutionizes molecule generation in bioengineering and biological research, significantly accelerating discovery processes. However, this advancement introduces critical concerns regarding intellectual property protection. To address these challenges, we propose the first robust watermarking method designed for molecules, which utilizes atom-level features to preserve molecular integrity and invariant features to ensure robustness against affine transformations. Comprehensive experiments validate the effectiveness of our method using the datasets QM9 and GEOM-DRUG, and generative models GeoBFN and GeoLDM. We demonstrate the feasibility of embedding watermarks, maintaining basic properties higher than 90.00\% while achieving watermark accuracy greater than 95.00\%. Furthermore, downstream docking simulations reveal comparable performance between original and watermarked molecules, with binding affinities reaching -6.00 kcal/mol and root mean square deviations below 1.602 \AA. These results confirm that our watermarking technique effectively safeguards molecular intellectual property without compromising scientific utility, enabling secure and responsible AI integration in molecular discovery and research applications.

Country of Origin
🇭🇰 🇨🇳 Hong Kong, China

Page Count
18 pages

Category
Computer Science:
Machine Learning (CS)