Score: 1

Enhancing LLM-Based Social Bot via an Adversarial Learning Framework

Published: August 25, 2025 | arXiv ID: 2508.17711v3

By: Fanqi Kong , Xiaoyuan Zhang , Xinyu Chen and more

Potential Business Impact:

Makes computer bots act more like real people.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Developing Large Language Model (LLM) agents that exhibit human-like behavior, encompassing not only individual heterogeneity rooted in unique user profiles but also adaptive response to socially connected neighbors, is a significant research challenge. Social media platforms, with their diverse user data and explicit social structures, provide an ideal testbed for such investigations. This paper introduces EvoBot, an \textbf{Evo}lving LLM-based social \textbf{Bot} that significantly enhances human-like generative capabilities through a novel adversarial learning framework. EvoBot is initialized by Supervised Fine-Tuning (SFT) on representative data from social media and then iteratively refines its generation of sophisticated, human-like content via Direct Preference Optimization (DPO). This refinement is guided by feedback from a co-adapting \textbf{Detector} which concurrently improves its ability to distinguish EvoBot from humans, thereby creating an increasingly challenging learning environment for EvoBot. Experiments demonstrate that EvoBot generates content aligned with diverse user profiles, increasingly bypassing the co-adapting Detector through human-like expression. Moreover, it exhibits strong social responsiveness, more accurately modeling real-world opinion dynamics and information spread in multi-agent simulations. The framework also yields a more robust Detector, underscoring its broader utility for both advanced agent development and related detection tasks. The code is available at https://github.com/kfq20/EvoBot.

Country of Origin
🇨🇳 China

Repos / Data Links

Page Count
26 pages

Category
Computer Science:
Social and Information Networks