Backprompting: Leveraging Synthetic Production Data for Health Advice Guardrails
By: Kellen Tan Cheng , Anna Lisa Gentile , Chad DeLuca and more
Potential Business Impact:
Creates safer AI by spotting bad health advice.
The pervasiveness of large language models (LLMs) in enterprise settings has also brought forth a significant amount of risks associated with their usage. Guardrails technologies aim to mitigate this risk by filtering LLMs' input/output text through various detectors. However, developing and maintaining robust detectors faces many challenges, one of which is the difficulty in acquiring production-quality labeled data on real LLM outputs prior to deployment. In this work, we propose backprompting, a simple yet intuitive solution to generate production-like labeled data for health advice guardrails development. Furthermore, we pair our backprompting method with a sparse human-in-the-loop clustering technique to label the generated data. Our aim is to construct a parallel corpus roughly representative of the original dataset yet resembling real LLM output. We then infuse existing datasets with our synthetic examples to produce robust training data for our detector. We test our technique in one of the most difficult and nuanced guardrails: the identification of health advice in LLM output, and demonstrate improvement versus other solutions. Our detector is able to outperform GPT-4o by up to 3.73%, despite having 400x less parameters.
Similar Papers
SynLLM: A Comparative Analysis of Large Language Models for Medical Tabular Synthetic Data Generation via Prompt Engineering
Artificial Intelligence
Creates fake patient data for medical research.
PromptGuard: An Orchestrated Prompting Framework for Principled Synthetic Text Generation for Vulnerable Populations using LLMs with Enhanced Safety, Fairness, and Controllability
CV and Pattern Recognition
Stops AI from saying harmful or biased things.
Bypassing Prompt Guards in Production with Controlled-Release Prompting
Machine Learning (CS)
Breaks AI safety rules, making chatbots share secrets.