Generative AI in Map-Making: A Technical Exploration and Its Implications for Cartographers
By: Claudio Affolter , Sidi Wu , Yizi Chen and more
Potential Business Impact:
Makes computers draw maps from your words.
Traditional map-making relies heavily on Geographic Information Systems (GIS), requiring domain expertise and being time-consuming, especially for repetitive tasks. Recent advances in generative AI (GenAI), particularly image diffusion models, offer new opportunities for automating and democratizing the map-making process. However, these models struggle with accurate map creation due to limited control over spatial composition and semantic layout. To address this, we integrate vector data to guide map generation in different styles, specified by the textual prompts. Our model is the first to generate accurate maps in controlled styles, and we have integrated it into a web application to improve its usability and accessibility. We conducted a user study with professional cartographers to assess the fidelity of generated maps, the usability of the web application, and the implications of ever-emerging GenAI in map-making. The findings have suggested the potential of our developed application and, more generally, the GenAI models in helping both non-expert users and professionals in creating maps more efficiently. We have also outlined further technical improvements and emphasized the new role of cartographers to advance the paradigm of AI-assisted map-making.
Similar Papers
Envisioning Generative Artificial Intelligence in Cartography and Mapmaking
Human-Computer Interaction
Makes maps smarter and easier to create.
Generative AI for Urban Planning: Synthesizing Satellite Imagery via Diffusion Models
CV and Pattern Recognition
Creates realistic city pictures from descriptions.
Generative Artificial Intelligence and Agents in Research and Teaching
Computers and Society
Helps computers create text, art, and ideas.