Score: 0

Addressing Weak Authentication like RFID, NFC in EVs and EVCs using AI-powered Adaptive Authentication

Published: August 26, 2025 | arXiv ID: 2508.19465v1

By: Onyinye Okoye

Potential Business Impact:

Secures electric cars from hackers using smart AI.

Business Areas:
RFID Hardware

The rapid expansion of the Electric Vehicles (EVs) and Electric Vehicle Charging Systems (EVCs) has introduced new cybersecurity challenges, specifically in authentication protocols that protect vehicles, users, and energy infrastructure. Although widely adopted for convenience, traditional authentication mechanisms like Radio Frequency Identification (RFID) and Near Field Communication (NFC) rely on static identifiers and weak encryption, making them highly vulnerable to attack vectors such as cloning, relay attacks, and signal interception. This study explores an AI-powered adaptive authentication framework designed to overcome these shortcomings by integrating machine learning, anomaly detection, behavioral analytics, and contextual risk assessment. Grounded in the principles of Zero Trust Architecture, the proposed framework emphasizes continuous verification, least privilege access, and secure communication. Through a comprehensive literature review, this research evaluates current vulnerabilities and highlights AI-driven solutions to provide a scalable, resilient, and proactive defense. Ultimately, the research findings conclude that adopting AI-powered adaptive authentication is a strategic imperative for securing the future of electric mobility and strengthening digital trust across the ecosystem. Keywords: weak authentication, RFID, NFC, ML, AI-powered adaptive authentication, relay attacks, cloning, eavesdropping, MITM attacks, Zero Trust Architecture

Page Count
54 pages

Category
Computer Science:
Cryptography and Security