Score: 1

Bi-LoRA: Efficient Sharpness-Aware Minimization for Fine-Tuning Large-Scale Models

Published: August 27, 2025 | arXiv ID: 2508.19564v1

By: Yuhang Liu , Tao Li , Zhehao Huang and more

Potential Business Impact:

Makes AI learn better with less data.

Business Areas:
A/B Testing Data and Analytics

Fine-tuning large-scale pre-trained models with limited data presents significant challenges for generalization. While Sharpness-Aware Minimization (SAM) has proven effective in improving generalization by seeking flat minima, its substantial extra memory and computation overhead make it impractical for large models. Integrating SAM with parameter-efficient fine-tuning methods like Low-Rank Adaptation (LoRA) is a promising direction. However, we find that directly applying SAM to LoRA parameters limits the sharpness optimization to a restricted subspace, hindering its effectiveness. To address this limitation, we propose Bi-directional Low-Rank Adaptation (Bi-LoRA), which introduces an auxiliary LoRA module to model SAM's adversarial weight perturbations. It decouples SAM's weight perturbations from LoRA optimization: the primary LoRA module adapts to specific tasks via standard gradient descent, while the auxiliary module captures the sharpness of the loss landscape through gradient ascent. Such dual-module design enables Bi-LoRA to capture broader sharpness for achieving flatter minima while remaining memory-efficient. Another important benefit is that the dual design allows for simultaneous optimization and perturbation, eliminating SAM's doubled training costs. Extensive experiments across diverse tasks and architectures demonstrate Bi-LoRA's efficiency and effectiveness in enhancing generalization.

Page Count
20 pages

Category
Computer Science:
Machine Learning (CS)