Score: 0

Prediction of Distant Metastasis for Head and Neck Cancer Patients Using Multi-Modal Tumor and Peritumoral Feature Fusion Network

Published: August 28, 2025 | arXiv ID: 2508.20469v1

By: Zizhao Tang , Changhao Liu , Nuo Tong and more

Potential Business Impact:

Predicts cancer spread to help doctors treat patients.

Business Areas:
Image Recognition Data and Analytics, Software

Metastasis remains the major challenge in the clinical management of head and neck squamous cell carcinoma (HNSCC). Reliable pre-treatment prediction of metastatic risk is crucial for optimizing treatment strategies and prognosis. This study develops a deep learning-based multimodal framework to predict metastasis risk in HNSCC patients by integrating computed tomography (CT) images, radiomics, and clinical data. 1497 HNSCC patients were included. Tumor and organ masks were derived from pretreatment CT images. A 3D Swin Transformer extracted deep features from tumor regions. Meanwhile, 1562 radiomics features were obtained using PyRadiomics, followed by correlation filtering and random forest selection, leaving 36 features. Clinical variables including age, sex, smoking, and alcohol status were encoded and fused with imaging-derived features. Multimodal features were fed into a fully connected network to predict metastasis risk. Performance was evaluated using five-fold cross-validation with area under the curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). The proposed fusion model outperformed single-modality models. The 3D deep learning module alone achieved an AUC of 0.715, and when combined with radiomics and clinical features, predictive performance improved (AUC = 0.803, ACC = 0.752, SEN = 0.730, SPE = 0.758). Stratified analysis showed generalizability across tumor subtypes. Ablation studies indicated complementary information from different modalities. Evaluation showed the 3D Swin Transformer provided more robust representation learning than conventional networks. This multimodal fusion model demonstrated high accuracy and robustness in predicting metastasis risk in HNSCC, offering a comprehensive representation of tumor biology. The interpretable model has potential as a clinical decision-support tool for personalized treatment planning.

Country of Origin
🇨🇳 China

Page Count
19 pages

Category
Quantitative Biology:
Quantitative Methods