Enhancing Pseudo-Boxes via Data-Level LiDAR-Camera Fusion for Unsupervised 3D Object Detection
By: Mingqian Ji, Jian Yang, Shanshan Zhang
Potential Business Impact:
Helps self-driving cars see better without labels.
Existing LiDAR-based 3D object detectors typically rely on manually annotated labels for training to achieve good performance. However, obtaining high-quality 3D labels is time-consuming and labor-intensive. To address this issue, recent works explore unsupervised 3D object detection by introducing RGB images as an auxiliary modal to assist pseudo-box generation. However, these methods simply integrate pseudo-boxes generated by LiDAR point clouds and RGB images. Yet, such a label-level fusion strategy brings limited improvements to the quality of pseudo-boxes, as it overlooks the complementary nature in terms of LiDAR and RGB image data. To overcome the above limitations, we propose a novel data-level fusion framework that integrates RGB images and LiDAR data at an early stage. Specifically, we utilize vision foundation models for instance segmentation and depth estimation on images and introduce a bi-directional fusion method, where real points acquire category labels from the 2D space, while 2D pixels are projected onto 3D to enhance real point density. To mitigate noise from depth and segmentation estimations, we propose a local and global filtering method, which applies local radius filtering to suppress depth estimation errors and global statistical filtering to remove segmentation-induced outliers. Furthermore, we propose a data-level fusion based dynamic self-evolution strategy, which iteratively refines pseudo-boxes under a dense representation, significantly improving localization accuracy. Extensive experiments on the nuScenes dataset demonstrate that the detector trained by our method significantly outperforms that trained by previous state-of-the-art methods with 28.4$\%$ mAP on the nuScenes validation benchmark.
Similar Papers
A Multimodal Hybrid Late-Cascade Fusion Network for Enhanced 3D Object Detection
CV and Pattern Recognition
Helps cars see people and bikes better.
3D Can Be Explored In 2D: Pseudo-Label Generation for LiDAR Point Clouds Using Sensor-Intensity-Based 2D Semantic Segmentation
CV and Pattern Recognition
Teaches self-driving cars to see without 3D maps.
InsFusion: Rethink Instance-level LiDAR-Camera Fusion for 3D Object Detection
CV and Pattern Recognition
Helps self-driving cars see better in 3D.