Score: 1

ExpertSim: Fast Particle Detector Simulation Using Mixture-of-Generative-Experts

Published: August 28, 2025 | arXiv ID: 2508.20991v1

By: Patryk Będkowski , Jan Dubiński , Filip Szatkowski and more

Potential Business Impact:

Speeds up particle collision simulations for science.

Business Areas:
Simulation Software

Simulating detector responses is a crucial part of understanding the inner workings of particle collisions in the Large Hadron Collider at CERN. Such simulations are currently performed with statistical Monte Carlo methods, which are computationally expensive and put a significant strain on CERN's computational grid. Therefore, recent proposals advocate for generative machine learning methods to enable more efficient simulations. However, the distribution of the data varies significantly across the simulations, which is hard to capture with out-of-the-box methods. In this study, we present ExpertSim - a deep learning simulation approach tailored for the Zero Degree Calorimeter in the ALICE experiment. Our method utilizes a Mixture-of-Generative-Experts architecture, where each expert specializes in simulating a different subset of the data. This allows for a more precise and efficient generation process, as each expert focuses on a specific aspect of the calorimeter response. ExpertSim not only improves accuracy, but also provides a significant speedup compared to the traditional Monte-Carlo methods, offering a promising solution for high-efficiency detector simulations in particle physics experiments at CERN. We make the code available at https://github.com/patrick-bedkowski/expertsim-mix-of-generative-experts.

Repos / Data Links

Page Count
8 pages

Category
Computer Science:
CV and Pattern Recognition